

DEDICATED RADIOSONDE VALIDATION MEASUREMENTS

F. J. Schmidlin

NASA Goddard Space Flight Center

Observational Science Branch

Wallops Island, Virginia 23337

UPPER AIR INSTRUMENTATION: RESEARCH AND PROJECTS

IMPROVE AND/OR REFINE UPPER AIR METEOROLOGICAL
INSTRUMENTS AND PROCESSING METHODS FOR OBTAINING MORE
ACCURATE OBSERVATIONS TO MEET THE NEED OF TODAY'S
CLIMATE CHANGE RESEARCH

PARTICIPATE IN EARTH SCIENCES ATMOSPHERIC STUDIES

UPPER AIR DISCIPLINES

TEMPERATURE (BALLOON-BORNE ATM* RADIOSONDES)

WATER VAPOR (BALLOON-BORNE CHILLED MIRROR INSTRUMENT)

OZONE (ECC-VERTICAL PROFILES; GROUND-BASED TOTAL OZONE)

* ACCURATE TEMPERATURE MEASUREMENT

ATM RADIOSONDE

Uses three thermistors; each with different emissivity and absorptivity values

Simultaneously solve three equations in Heat Balance Equation

$$-HA()T) + _{1}R + S - _{2}AT^{4} + 2 r_{wi}^{2}k_{wi}(dT_{wi}/dI)_{I=0} = CdT/dt$$

Nature of technique does not require knowledge of environmental radiative background

Tropospheric accuracy believed to be: 0.2°C – 0.3°C

Stratospheric accuracy believed to be: 0.3°C – 0.4°C

Fig.5. Examples of thermistor errors obtained from each of the six observation sites. Dotted lines represent individual observations; heavy solid line is the mean thermistor error. The period over which the observations were obtained is a few weeks except for Wallops Island where the record covers many different months over a five year period. The different shapes and magnitudes of the mean errors should be noted.

CAMEX - 4

CHILLED MIRROR DEW POINT SENSOR

- Designed for low cost radiosonde application
- Optical detection of mist or ice on mirror
- Direct measurement of dew point temperature—RH calibration unnecessary
- No influence from radiation, wind, or other such factors
- Doubtful accuracy when in clouds, but detects cloud tops and bottoms
- Measurement range ~4 percent to 100 percent RH
- Response and long-term stability still being studied
- Reusable, when found
- LT accuracy believed to be <~2-5 percent
- UT accuracy believed to be <~15 percent

CHILLED MIRROR

AFWEX -- Chilled Mirror -- DOE ARM Site, Lamont, OK ARM2014 12/09/2000 03:24:46 UTC

Andros Island, the Bahamas (24.7°N, 77.8°W) 09/14/98 01:22:07 UTC

ECC OZONESONDE

- OZONESONDES PROVIDE IN SITU VERTICAL OZONE PROFILES
- ECC ACCURACY IS SENSITIVE TO TERMS CONTAINED IN THE OZONE EQUATION but GENERALLY WITHIN ±10 PERCENT
- THE PREPARATION PROCEDURES USED AT WALLOPS ISLAND ARE ALSO USED AT NATAL, ASCENSION ISLAND, and IN FIELD CAMPAIGNS
- ECC TOTAL COLUMN OZONE OVER-BURDEN COMPARES WITH DOBSON SPECTROPHOTOMETER ON AVERAGE WITHIN ~5%
- ECC COMPARISON WITH LIDAR AND HALOE INDICATES THE ECC TO BE ~11 PERCENT LOWER AT ~10 hPa

VALIDATION APPROACH

Validation instruments will be released from a defined location such as NASA/GSFC/Wallops Island

Instrument release will be timed to reach the stratosphere within one-half hour of AIRS ephemeris

Only AIRS ephemeris within ±2 degrees latitude will be supported

Daytime (60%) and nighttime (40%) observations are planned

Upper stratosphere/mesosphere measurements (rocketsondes) can be made only if resources(\$) are available

